Home » Articole » RO » Știință » Fizica » Mecanica » Presiunea în fluide

Presiunea în fluide

postat în: Mecanica 0

Fără îndoială, ați auzit cuvântul „presiune” folosit în legătură cu sângele (tensiune arterială ridicată sau scăzută) și în legătură cu vremea (sisteme meteorologice de înaltă și joasă presiune). Acestea sunt doar două dintre multele exemple de presiune în fluide. (Reamintim că am introdus ideea de presiune în Echilibrul static și elasticitatea, în contextul tensiunii și deformării în masă.)

PRESIUNE

Presiunea (p) este definită ca forța normală F pe unitatea de suprafață A peste care se aplică forța sau

(14.3)   p = F/A.

Pentru a defini presiunea într-un anumit punct, presiunea este definită ca forța dF exercitată de un fluid asupra unui element infinitezimal de suprafață dA care conține punctul, rezultând p = dF/dA.

 

O anumită forță poate avea un efect semnificativ diferit, în funcție de zona pe care se exercită forța. De exemplu, o forță aplicată pe o suprafață de 1 mm2 are o presiune de 100 de ori mai mare decât aceeași forță aplicată pe o suprafață de 1 cm2. De aceea, un ac ascuțit este capabil să pătrundă prin piele atunci când se exercită o forță mică, dar aplicarea aceleiași forțe cu un deget nu perforează pielea (Figura 14.5).

Presiunea în fluideFigura 14.5 (a) O persoană care este înțepată cu un deget poate fi iritată, dar forța are un efect de durată redus. (b) În schimb, aceeași forță aplicată pe o zonă de dimensiunea capătului ascuțit al unui ac este suficientă pentru a rupe pielea.

Rețineți că, deși forța este un vector, presiunea este un scalar. Presiunea este o mărime scalară deoarece este definită ca fiind proporțională cu mărimea forței care acționează perpendicular pe suprafață. Unitatea SI pentru presiune este pascalul (Pa), numit după matematicianul și fizicianul francez Blaise Pascal (1623–1662), unde

1 Pa = 1 N/m2.

Mai multe alte unități sunt folosite pentru presiune, despre care vom discuta mai târziu în capitol.

Variația presiunii cu adâncimea într-un fluid de densitate constantă

Presiunea este definită pentru toate stările materiei, dar este deosebit de importantă atunci când discutăm despre fluide. O caracteristică importantă a fluidelor este că nu există o rezistență semnificativă la componenta unei forțe aplicate paralel cu suprafața unui fluid. Moleculele fluidului pur și simplu curg pentru a se acomoda cu forța orizontală. O forță aplicată perpendicular pe suprafață comprimă sau extinde fluidul. Dacă încercați să comprimați un fluid, descoperiți că în fiecare punct din interiorul fluidului se dezvoltă o forță de reacție în direcția exterioară, echilibrând forța aplicată asupra moleculelor la suprafață.

Luați în considerare un fluid de densitate constantă, așa cum se arată în Figura 14.6. Presiunea din fundul recipientului se datorează presiunii atmosferei (p0) plus presiunea datorată greutății fluidului. Presiunea datorată fluidului este egală cu greutatea fluidului împărțită la suprafață. Greutatea fluidului este egală cu masa lui înmulțită cu accelerația datorată gravitației.

Presiunea în fluideFigura 14.6 Fundul acestui recipient susține întreaga greutate a fluidului din el. Laturile verticale nu pot exercita o forță ascendentă asupra fluidului (deoarece nu poate rezista la o forță de forfecare), așa că fundul trebuie să susțină tot.

Deoarece densitatea este constantă, greutatea poate fi calculată folosind densitatea:

w = mg = ρVg = ρAhg.

Prin urmare, presiunea din partea de jos a recipientului este egală cu presiunea atmosferică adăugată la greutatea fluidului împărțită la suprafață:

p = p0 + ρAhg/A = p0 + ρhg.

Această ecuație este bună numai pentru presiunea la o adâncime pentru un fluid de densitate constantă.

PRESIUNEA LA ADÂNCIME PENTRU UN FLUID CU DENSITATE CONSTANTĂ

Presiunea la adâncime într-un fluid cu densitate constantă este egală cu presiunea atmosferei plus presiunea datorată greutății fluidului sau

(14.4)  p = p0 + ρhg,

unde p este presiunea la o anumită adâncime, p0 este presiunea atmosferei, ρ este densitatea fluidului, g este accelerația datorată gravitației și h este adâncimea.

 

Barajul celor Trei Chei, ridicat pe râul Yangtze Figura 14.7 Barajul celor Trei Chei, ridicat pe râul Yangtze în centrul Chinei în 2008, a creat un rezervor masiv care a strămutat peste un milion de oameni. (credit: „Le Grand Portage”/Flickr, licența CC BY 2.0)

EXEMPLUL 14.1

La ce forță trebuie să reziste un baraj?

Luați în considerare presiunea și forța care acționează asupra barajului care reține un rezervor de apă (Figura 14.7). Să presupunem că barajul are 500 m lățime și apa are 80,0 m adâncime la baraj, așa cum este ilustrat mai jos. (a) Care este presiunea medie asupra barajului din cauza apei? (b) Calculați forța exercitată asupra barajului.

Presiunea în fluidePresiunea medie p datorată greutății apei este presiunea la adâncimea medie h de 40,0 m, deoarece presiunea crește liniar cu adâncimea. Forța exercitată asupra barajului de apă este presiunea medie înmulțită cu aria de contact, F = pA.

Soluție

a. Presiunea medie datorată greutății unui fluid este

(14.5)   p = hρg.

Introducând densitatea apei din tabelul 14.2 și luând h drept adâncimea medie de 40,0 m, obținem

p = (40,0 m)(103 kg/m3)(9,80 m/s2) = 3,92 × 105 N/m2 = 392 kPa.

b. Am găsit deja valoarea pentru p. Aria barajului este

A = 80,0 m × 500 m = 4,00 × 104 m2,

astfel încât

F = (3,92 × 105 N/m2)(4,00 × 104 m2) = 1,57 × 1010 N.

Semnificație

Deși această forță pare mare, este mică în comparație cu greutatea de 1,96 × 1013 N a apei din rezervor. De fapt, este doar 0,0800% din greutate.

 

EXERCIȚIUL 14.1

Dacă rezervorul din Exemplul 14.1 ar fi acoperit de două ori suprafața, dar ar fi fost menținut la aceeași adâncime, ar trebui să fie reproiectat barajul?

 

Răspuns:

Presiunea găsită în partea (a) a exemplului este complet independentă de lățimea și lungimea lacului; depinde doar de adâncimea medie la baraj. Astfel, forța depinde doar de adâncimea medie a apei și de dimensiunile barajului, nu de întinderea orizontală a rezervorului. În diagramă, rețineți că grosimea barajului crește odată cu adâncimea pentru a echilibra forța în creștere din cauza presiunii în creștere.

Sursa: Physics, University Physics (OpenStax), https://openstax.org/books/university-physics-volume-1/pages/1-introductionacces gratuit sub licență CC BY 4.0. Traducere și adaptare de Nicolae Sfetcu

© 2022 MultiMedia Publishing, Fizica, Volumul 1

Fizica fenomenologică - Compendiu - Volumul 2
Fizica fenomenologică – Compendiu – Volumul 2

Un compendiu care se dorește a fi exhaustiv pentru domeniul fizicii, cu accent pe explicarea fenomenelor și aplicațiilor practice. O carte pentru studiul personal, concisă și ușor de citit, care clarifică aceste teorii ale fizicii, cel mai important domeniu al … Citeşte mai mult

Nu a fost votat $9,99$34,55 Selectează opțiunile
Fizica fenomenologică - Compendiu - Volumul 1
Fizica fenomenologică – Compendiu – Volumul 1

Un compendiu care se dorește a fi exhaustiv pentru domeniul fizicii, cu accent pe explicarea fenomenelor și aplicațiilor practice. O carte pentru studiul personal, concisă și ușor de citit, care clarifică aceste teorii ale fizicii, cel mai important domeniu al … Citeşte mai mult

Nu a fost votat $9,99$34,55 Selectează opțiunile
Mecanica fenomenologică
Mecanica fenomenologică

O privire de ansamblu asupra mecanicii clasice, care intenționează să ofere o acoperire a principiilor și tehnicilor fundamentale, un domeniu vechi dar care se află la baza întregii fizicii, și care în ultimii ani a cunoscut o dezvoltare rapidă. Se … Citeşte mai mult

Nu a fost votat $4,99 Selectează opțiunile

Lasă un răspuns

Adresa ta de email nu va fi publicată.